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FOREWORD

This interim technical repori was prepared by the Theoretical
Chemistry Institute, University of Wisconsin, Madision, Wisconson,
on Contract AF 33(657)-7311 for the Aeronautical Research Laboratocries,
Office of Aerospace Research, United States Air Foxce, The research
reported herein was accomplished on Task 701301, "Research on Energetic
Processes in Gases" of Project 7013, "Research in Chemical Energetics™
under the technical cognizance of Mr. Karl Scheller of the Chemistry
Research Laboratory of ARL. The project director at the University of
Wisconsin was Joseph O. Hirschfelder.

Work on the contract was begun on 16 September 1961 and this

repoxt was completed April 1963,
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by
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ABSTRACT

gqggb

A demonstration is given that for two-electron systems the Hartree-
fock and first natural spin orbitals are different functions., The
method used is perturbation theory for which the zerc-order problem is
the Hartree-Fock approximatior. A perturbation expansion through the
second order is obtained for the first natural spin orbital. The two
orbitals begin to differ in the second order and their energies in the
fourth order. An equation for the second order par. of the orbital
difference function is derived. Estimates of the norms of the cxbital
difference functions are calculated for the ground states of the helium

atom and the hydrogen molecule and are found to be small. /qxxifzk)

*
This resesrch was supported jointly by the following contract and
grant: United States Air Forxce Contract AF 33(657)-7311 and National
Aeronautics and Space Administration Grant NsG-275-62€4180).
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COMPARISON OF THE HARTREE-FOCK ORBITAL WITH THE FIRST
NATURAL SPIN ORBITAL FOR TWO-ELECTRON SYSTEMS

Introduction

Calculations of approximate energies of two-electron systems have

shown that the first natural spin orbital gives an approximate energy

£§1:2,3,)

whecher the first natural spin orbital would coincide wiih the Hartree-

very close to the Hartree-F» ' ener The question has arisen
Fock orbital if it were calculated exactly. One would expect the two
orbitals to be different functions because they are defiue? differently.
The Hartree-Fock orbital is defined to give the optimum energy, whereas
the first natural spin orbital is defined to have the optimum overlap
with the true wave fuaction. In this paper a demonstration is given
that the first natural spin orbital is different fiom the Hartree-Fock
orbital for two-electron systems even though the difference is small.

The method followed in this paper is perturbation theory in which
the zero-order problem is the Hartree-Fock approximation. The discus-
sion starts with a brief summary of the proof. After that follows a
short review of natural spin orbitals for two-electron systems. The
perturbation scheme is then defined, and an expression for the first
natural spin orbital is developed in terms of the Hartree-Fock orbital.
The difference function between the two orbitals is then discussed, and
its norm is explicitly calculated for the helium atom.

Throughout the discussion the exact wave function of the two-
electron system is always the spatial part of the singlet ground state
wave function. Likewise, only the spatial parts of the Hartree-Fock
and naturzl spin orbitals are considered. The spin parts are disre-

gard>d since the Hamiltonian does not contain any spin operators.

M H. Shull and P.-0. L®wdin, J. C. P. 23, 1565 (1955).
(2) P.-0. LBwdin and H. fnull, Phys. Rev. 101, 1730 (1936).
3 H. Shull and P.-C. LBwdin, J. C. P. 30, 617 (1959).

“) E. R. Davidson, J. C. P, 37, 2966 (1962).
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In brief, the proof that the first natural spin orbital is differ-
ent from the Hartree-Fock orbitai is as follows. The exact wave function
of the two-electron system is first expanded in a perturbation series,
eq. (12), in which the leading term is the Hartree-Fock function. Then
the perturbation expansiorn of the first natural spin orbital, eq. (14),
correct through the second order in the perturbation parameter is
derived. It becomes apparent, eq. (18), that the difference between the
two orbitals is not everywhere zero. Therefore the two orbitals are
different functions.

The use of perturbation theory is justified by the smallness of the
perturbation. An order of magnitude estimate of the perturbation can be
obtained from the following considerationg, The difference between the
Hartree-Fock energy of a two-electron system and the approximate energy
given by the first natural spin orbital should be of the fourth order
in the perturbationgs) Shull and Ldein(3) found this energy difference
tobe 1.43x 107 )

1.57 x 10-4 ezlao for the hydrogen molecule. Therefore, the pertur-

e2/ao for the helium atom; Davidson obtained

bation is small enough to justify a perturbation expansion.

Perturbation Expansion of the Ficst Natural Spin Orbital

In this section, a few properties of the natural spin orbitals are
first discussed., Then the perturbation scheme which is used in develop-
ing the exact wave function of a two-electron system is explicitly
stated, After that, the perturbation expansion of the first natural
spin orbital is developed.

The exact normalized wave function ¥(12) of a two-electron system
can be expanded in terms of the natural spin orbitalgz’4’6’7)¢k LT

folliows:

- w m e -

() See footnote (8).
() p.-0. LBwdin, Phys. Rev. 97, 1474 (1955).

™ E. R. Davidson, J. C. P. 37, 577 (1962}.



0
¥(12) = szkxku;ka ¢))
k=1
wh the 'Qi are the occupation numbers. The natural spin orbitals

are mutually orthorormal, i.e.

For the purposes of this discussion it is convenient to rewrite the

wave function ¥(12) as

v(2) = N, e WKL) + ma} (3)

where T(12) contains all of the natural spin orbitals except the first
cne. An important property of the first natural spin orbital is that
it is strongly orthogonal to the function T(12) , {.e.

‘/;*(12)11(1) d, = 'r*(lz)’xl(z) dr, = 0 . (%)

The perturbation scheme is obtained by rewriting the exact
Hamiltonian H of the two-electron system as a Hartree-Fock Hamilton-

ian H(o) plus a perturbation H(l)

B o= 59 4 Ag® (5)

where 'X is the -ovrturbation parameter which is ultimately set equal
to unity. The lLartree-Fock Hamiltonian is

19 =« v21) + n%2) (6)
where
1) = -5V -4 vQ) @
1



in agtomic units, The Hartree-F¥ock potential V(1) in whick electron

1 moves is

V(1) = f?:(z);i;tfo(z) at, . (8)

The function ?o is the Hartree-Fock orbital which satisfies the

equation
R = € P, 9

with ¢ =~ as the orbital energy. The Hartree-Fock orbital is normalized
to unity, i.e,

®
f?o(l) fc(l) dcl = 1 . (10)

The Hartree-Fock function of the two-electron system is given by the
product ?0(1)?0(2) . The perturbation term 11 in the Hamiltonian
is

Y = oy - v (11)
r,.
12
where V is defined by eq. (8), and T is the inter-electronic
distance.
According to the above perturbation scheme the exact wave function
¥(12) is written as ?0(1) ?0(2) plus additional terms. The detailed
form of this expansim:a through the second order in A is derived in

Appendix I, eq. (I,10), and is

va2) = oD (2 + ¥ [Yo(nf‘z)(z) + £y f(,(zi‘
(12)

(1) 2_(2) higher order
+ 2sPay + M@ ay + her o .

The normalization constant C 1is also the overlsp between ¥(12) and
the Hartree-Fock function ?0(1) ?0(2) . The functions f(z) s s(‘l)



and S(z) obey the following orthognality relations {see end of
Appendix I),

*
(2) -
ff M Wy = 0 (13a)
1*
fs( dane (e = o (13b)
and
2*
fs( dun@ ydy, = 0 . (13¢)

From an examination of ¥(12) given by eq. (12) it is seen that
tie second order expausions for the first natural spin orbital and the

function T(12) appearing in eq. (3) are

X, = ¢+ AP (14)
and

r2) = AsPa +3%Pay . (15)

The overlap between ?0(1) and X 1(]) is equa} to unity, through
the second order, since ?0(1) is orthogonal to f(")(l) , eq. (13a).
Therefore, the overlap C between ¥(12) and ?O(I)TO(Z) is approx-
imately equal to 'Ll » the square root of the first occupation number.

The two following observations indicate that eqs. (14) and (15)
are the correct second order expansions. First, substituting the two
expansioms into %(12) given by eq. (3) and keepiag terms only through
the second order in M\ gives the correct form of ¥(12) through the
“ gecond order, eq. (12). Second, the perturbation expansion of the
first natural spin orbital, eq. (14), satisfies the normalization
condition, eq. (2) with % = k' = 1 , through the second order in A ,

l.e.

*
f{:cyou) +)2f(2)(1)] [?0(1) +)2f(2)(1i ac - 1 (16)



by virtue of egs. (10) and (13a). The two expansions also satisfy,
through the second order, the strong orthogonality condition, °q. (4),

i.e.
*
f[)\s(l)(u) +Xzs(2)(1z)J [?0(1) +12f(2)(1§ a = 0 an

by virtue of egs. (13b) and (13c). Therefore, it can be concluded that
eq. (14) is the correct second order expansion of the firat natursl
spin orbital for a two-electron syntem.
From eq. (14) it is apparent that the first naturel spin orbital
){1 is different from the Hartree-Fock orbital P, - The difference
between the two orbitals, up through the second order in A , ia given

® {2

by the difference function

The Difference Function f(z)

The equation which the difference function f(2)

A»mendix IX, eq. (X1,6)) is

] *
2 2 1 1
Qx°(1) - e_o) £y = gl )T (1) /;‘ ) (12) B )?0(2) at, (18)

18)

satisfies (see

where the fuaction § satisfies the equation

(
(o) (1) 1 (N
\no - 2‘-0) s 7(12) = (g - E R, (19)

The quantities 3(1) and 3(2) are the first and second order energies
of the two-electron system and are given by the well-kaown eqs. (I1,3)
and (II,5).

Frem eq. (19) it is apparent that S(I)

Therefore it follows from eq. (18) that the difference function f(z)

{8 not everywhere zero.

is not everywhere :cro. Thus, the first natural spin orbital begins

to differ from the Hartree-Fock orbital in the second order.

(8 From eq. (14) one can verify that the Hartree-Fock energy begins to
differ from the first natursal spin orbital energy in the fourth
order. This result is obtained by taking the expectation value of
‘o Hamiltonian H , eq. (5), w%{? g a (IYX (2) and making use of
the form of the perturbation H R e 1).

6



An estimate for f(z} can be obtained from a sufficiently good
approximate twe-electron wave function by the following methodsg) Multi-
plying ¥(12) , eq. (12), by ?0(2) , ilntegrating over the coordinates
of eiactron 2 and taking the corthogonality relations, eqs. (13a), (13b)
end (13c}, into account, we obtain

Pwmx 3 ﬁ*(lz)yo<z>dt2 X Xe¥ (20)

(o]

where

C = f ﬁ*az)fo(nfo(z) ade, . 21

(2)

higher order contributions. The norm of f(z)(l) in general is defined

¥ ¥
He@y = (ﬁm(l)fm(l) dtl) . (22)

In terms of the two-electron wave function of eq. (12),

% %
Py = |1 +-cli- f [/;*(12)?0(2)(1?.2] [/;*(12)3’9(2)4“;} Ty -

(23)

Bquatioas (21) and (23) were used to obtain an estimate for the

EBquation (20} i{s an approximation because the formula gives £ plus

to be

norm of f(z) for the case of the helium atom. The normalized Hylieraas
£ 810)
unct {o

¥(12) = (1.380) {1 +(0.3534)u + (0.1282)t - (0.1007)s
(24)
+ (0.03305)s” - (0.03173)..12] exp(-1.8188)

This method, due to O. Sinand§1u, was communicated to us by D.
Tuan.

(10) g, A Hylleraas, z. Physik 54, 347 (1929).
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was taken as an approximation to the exact helium wave function. The
variables 8, t and u are the well-known combinations s = (rl + r2) R
t = (r1 - rz) and u = ., ;vhercza the Ty, %y, and r,, are
expressed in units of a u'f\ /,ue with AL being the reduced mass of
the helium atom.

The difference function f(z)(l) , eq. (20), has the form

(), . KD _
R D A (25)
where
0 [® i,
(1) = <& [ ar, [ drjy Tyry, YD) QD) (26)
17,=0 12=l7171y

The following analytic approximation(u) to ?o(‘.’() was used

?0(2) - 2.9Zi466 [exp(-1.455?99 t2) + (2.00) exp(-0.8734794 rzi . (27)

Here T, is in units of a . The function X(1) turned out to be

{vwith r, in units of a ):

(1) = [(0. 1196) exp(-1.818 tl) - (0.1092) expf-5.092 rl)

1

- (0.01041) exp(-6.547 1:1)] r; + (2.037) exp(-1.818 r,)

(28)
= (0.08935) exp(-5.092 r;) - (0.01231) exp(-6.547 1)

+ (0.08650) exp(-1.818 rl) ry + (0.1286) exp(-1.818 rl) ri .

The ccefficient C , eq. (21}, is

- ]
C = 4n/| dr.x’I()@(ly = 0.9961 . (29
171 [
=0
1
(11)
L. C. Green, M. M, Mulder, M. N. Lewis and J. W. Woll, Phys. Rev.

93, 757 (1954).



The norm of f(z) , eq. (23), is
© 5
2
e & (144 [ arcfryn) = o.00z . (30)
2 11
c 1-0
Thus the norm of f(z) is very small compared to uniry, the norm of ?o’
The overlap between the Hartree-Fock and first natural spin

orbitals, through the fourth order, is

%
f?ou)xlu)drl - (1+ Hf(z)Hz} = 0.999998 . (31)

Our value for the overlap is higher than the value obtained by LBwdin
and Shullsz) 0.99995080 . Sinanoflu has mentioned that as one improves
an approximate two-electron wave function, the magnitude of the function
£(2) is reduced. Since the energy obtained by LBwdin and Shull is
-2.8785973 ezlao as compared with =-2,90324 ezlao obtained by Hylleraas''®
the wave function calculated by LBwdin and Shull has a larger f(z) than
the Hyllerdas function, eq. (24). Thus, the above overlaps are in the
correct vrelationship.

Davidson(a) has examined the natural spin orbital expansion of the
Kolos and Roothaan wave function for the hydrogen molecule. He obtained
0.999982 for the overlap between the Hartree-Fock and firet natural
spin orbitals of R, . Therefore; the norm of the £(2) aggociated
with the Kolos and Roothaan wave function is approximately 0.006 ,

This value is small compared to unity, the norm of the Hartree-Fock

function for Hz .
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APPENDIX 1

Perturbation Expansion of an Exact Two-Electron Wave Function

In this appendix a derivation is given of the form which an exact
two-electron wave function ¢(12) must necessarily assume if it is
developed according to the perturbation scheme described by eqs. (5)
through (11).

If the exact two-electron Hamiltonian of the system is decomposed
according to eqs, (5) and (6), ther the two-electron SchrBdinger
equation which ¥(12) satisfies can be written as

(h°(1) + 1°) +)H(1)) v(12) = BYy(12) (1,

vwhere E 1is the exact energy of the two-electron system.

The zero-order two-electron problem associated with eq. (I,1) is

QP(U + h°<2))fo“)?o<2> i X AGT X (1,2)

Therefore ¥{(12) must be written as the solution of the zero-order
problem, ?o(l)fo(Z) , plus some other functiocns.

The one-electron problem equivalent to eq. (I,2) is
WM = EQM . (1,3
The one-electron Hamiltonian h°(1) , eq. (7). 1is
o) = -y VR - —3; + fﬁ(:z) = P (1,4)

with the Hartree-Fock potential V(1) , eq. (8), written out explicitly.
It should be noted that the operator ho(l) in eqs. (I,1) to (1,4)
depends on the unknown function ?o .

After eq. (I,4) is solved for },o , one can use the operator
h%(2) with ’)0 fixed to define .he following eigenvalue problem

h°(1)fk(1) = 6P k=12, .. . (1,5)

10



The two-electron wave function ¥(12) can be expanded in terms of
products of the form 1?1(1)’§(2) where 1, =0, 1, 2, .., . In these
products the orbitals are any solution of eq. (1,5) or the Hartree-Fock
orbital ? . Therefore the perturbatior expansion of ¥(12) through
the second order in A is

¥(12) = {y (L, +Y [) A% ‘2’] 0, (WP, )

i, 1=0 R
(1,9)

+ higher order terms

where C is the normalization constant. The summation sign includes
integration over the continuum while the asterisk implies that the
subscripts 1 and j sre never both equal tc zero.

The perturbation expansion of eq. (I,1) is obtained by substituting
into eq. (X,1) ¥(12) from eq. (I,6) and E from the well-known
expansion

E = 26 +Ax(D 23R P 4L (1,7)

Collecting coefficients of A and )\ 2 one obtains, respectively, the

well-known.expressions

 _? LW, - a1 e (e >

°1 € 7€, - 26) (1,8)
and
(2) 3 *<91(1)fi(2)'x(1) ~ H(l)t?m(l)fn(zD
j B zn-o (€i+ CJ - 260)
i (1,9)

AR XLl XTI ACY,
(€, +€ - 2€)

X

where the brackets are a short-hand notation for the integrsls. A

straight forward calculation shows that the integrals

11



(91(1)%(2”3(1) - 1Dy ?0(1)?0(2)> vanish 1f at least cme of the

subscripts 1 or j 1is equal to zero.

Substituting eqs. (I,8) and (I1,9) into eq. (I,6) one obtains the

desired second order expansion of ¥(12) , namely

vaz = cg%(l)%m + P Pwem +9>0<1>f(2’(2§

“

+ AP a2 + NP +

2)

The functions f(z) R S(l) and s( are

(.4

P - Z°§?‘Fi‘1) ,
i=1

R
sz = Z 1y PPy
i,j=1

and
w

sP a2 = Z Cﬁ) 1(1)%(2)
i,5=1

(1,10)
higher order(
terms
(I,11a)
(1,11b)
(I,llc)

Since the Hartree-Fock orbital f’o is orthogonal to all of the orbitals

?i (k = 1, 2, +++) , the above three functiong have the orthogonality

properties given by eqs. (13a), (13b) and (13c¢).

12



APPENDIX II

Equation for the Difference Function f(z)

In this appendix the equation which the second order difference
function 5(2) satisfies is developed by straight forward perturbation
techniques,

The equation for f(z) i{s obtained from the two-particle
Schridinger equation

wy(12) = B¥(i2) (11,1)

by decomposing the Hamiltoniam according to eqs. (5) and (6), expanding
E according to eq. (I,7) and writing for w(12) the perturbation
expansion given by eq. (12). Egquating coefficients of )\ and A 2 one

obtains, respéctively,

where

¢) I f f ?:(1)?:(2) um% (1P, (2 dt, (11,3)

and

G“’ - zéb) [f‘”u)gm + ?o(l)f(”m] * Q“’ - 260) s 2)

. (11,4)
. E(z)%(l)?)o(z) + (r\:“) - u“)) sP (12

where

*®
f? . f f s 12) a“)?o(x)%(z)dtldtz : (11,5)

13



Multiplying eq. (XI,4) by ?0(2) » integrating over electron 2 and
taking eqs. (13a), (i3b) and (13c¢) into account, one obtaing the equation
for the difference function f(z) , namely

i *
Qx°(1> - @o) P - e ) - S5 ax Ve @2yar, (11,6

where 3(2) is given by eq. (I1,5) and Scl) satisfies eq. (11,2).

14





